Laplace Transform | Brilliant Math & Science Wiki (2024)

Sign up with Facebook or Sign up manually

Already have an account? Log in here.

Aareyan Manzoor, Dawar Husain, Tapas Mazumdar, and

  • Jenna Nieminen
  • Jimin Khim

contributed

The ​Laplace transform​ is an important tool in differential equations, most often used for its handling of non-hom*ogeneous differential equations. It can also be used to solve certain improper integrals like the Dirichlet integral.

Contents

  • Definition
  • Properties
  • Laplace Transform of some Popular Functions
  • Calculating Laplace Transform
  • Inverse Laplace Transform
  • The Convolution Theorem
  • Solving Differential Equation
  • Evaluating Improper Integrals

Definition

The Laplace transform maps a function of \(t\) to a function of \(s.\) We define

\[\mathcal{L}\left\{f\right\}\left(s\right) := \int\limits_{0}^{\infty} f(t)e^{-st}\,\text{dt}.\]

Properties

  1. \(\mathcal{L}\left\{f+g\right\}=\mathcal{L}\left\{f\right\}+\mathcal{L}\left\{g\right\}.\)

  2. \(\mathcal{L}\left\{cf\right\}=c\mathcal{L}\left\{f\right\}\), where \(c\) is a constant.

  3. \(\mathcal{L}\left\{f^{(n)}\right\}=s^n\mathcal{L}\left\{f\right\}-\displaystyle\sum_{i=1}^{n}s^{n-i}f^{(i-1)}(0).\) (This is proved later in the wiki.)

Laplace Transform of some Popular Functions

Note: Here, we are transforming \(f(t),\) a function of \(t,\) into \(F(s),\) a function of \(s.\)

\(f(t)\) \(\hspace{15mm}\)\(F(s)=\mathcal{L}\{f(t)\}\)
\(t^n\)\(\dfrac{\Gamma(n+1)}{s^{n+1}},\) where \(\Gamma\) is the gamma function.
\(e^{at}\)\(\dfrac{1}{s-a}\)
\(\sin(at)\)\(\dfrac{a}{s^2+a^2}\)
\(\cos(at)\)\(\dfrac{s}{s^2+a^2}\)
\(e^{at}f(t)\)\(F(s-a)\)
\(t^nf(t)\)\((-1)^n F^{(n)}(s)\)

We have

\[\begin{align}\mathcal{L}\{t^n\}&=\int_0^\infty t^n e^{-st} \text{dt}\\&=\dfrac{1}{s^{n+1}}\int_0^\infty x^n e^{-x} \text{dx} \qquad (\text{since } x=st\implies \text{dx}=s\text{dt})\\ &=\dfrac{\Gamma(n+1)}{s^{n+1}}.\ _\square\end{align}\]

We have

\[\begin{align}\mathcal{L}\{e^{at}\}&=\int_0^\infty e^{at}e^{-st} \text{dt}\\&=\int_0^\infty e^{at-st} \text{dt}\\&=\left. \dfrac{e^{at-st}}{a-s}\right|_0^\infty \\&=\dfrac{1}{s-a}.\ _\square\end{align}\]

We have

\[\begin{align}\mathcal{L}\{\sin(at)\}&=\mathcal{L}\left\{\dfrac{-i}{2}\big(e^{ait}-e^{-ait}\big)\right\}\\&=\dfrac{-i}{2}\left(\mathcal{L}\{e^{ait}\}-\mathcal{L}\{e^{-ait}\}\right)\\&=\dfrac{-i}{2}\left( \dfrac{1}{s-ai}-\dfrac{1}{s+ai}\right)\\&=\dfrac{a}{s^2+a^2}.\ _\square\end{align}\]

We have

\[\begin{align}\mathcal{L}\{\cos(at)\}&=\mathcal{L}\left\{\dfrac{1}{2}(e^{ait}+e^{-ait})\right\}\\&=\dfrac{1}{2}\left(\mathcal{L}\{e^{ait}\}+\mathcal{L}\{e^{-ait}\}\right)\\&=\dfrac{1}{2}\left( \dfrac{1}{s-ai}+\dfrac{1}{s+ai}\right)\\&=\dfrac{s}{s^2+a^2}.\ _\square\end{align}\]

We have

\[\mathcal{L}\left\{e^{at}f(t)\right\}=\int_0^\infty e^{at}f(t)e^{-st}\text{dt}=\int_0^\infty f(t)e^{-(s-a)t}\text{dt}=F(s-a).\]

What we have in the integral is \((s-a)\) instead of \(s\), so the function gets shifted. \(_\square\)

Consider

\[F(s)=\int_0^\infty f(t)e^{-st}\text{dt}.\]

Differentiate with respect to \(s\) \(n\) times to get

\[F^{(n)}(s)=\int_0^\infty (-t)^n f(t)e^{-st}\text{dt}\implies \mathcal{L}\{t^nf(t)\}=(-1)^n F^{(n)}(s).\ _\square\]

Calculating Laplace Transform

Some examples are shown here, which demonstrate how to calculate the Laplace transform of some given functions.

Find

\[\mathcal{L}\big\{5e^{6t}\sin(5t)+6e^{5t}\cos(7t)\big\}.\]

First, split it as two Laplace transforms:

\[5\mathcal{L}\big\{e^{6t}\sin(5t)\big\}+6\mathcal{L}\big\{e^{5t}\cos(7t)\big\}.\]

Now, we know \(\mathcal{L}\{\sin(5t)\}=\frac{5}{s^2+25}\) and \(\mathcal{L}\{\cos(7t)\}=\frac{s}{s^2+49}.\) Since the exponential function shifts the Laplace transform,

\[5\mathcal{L}\big\{e^{6t}\sin(5t)\big\}+6\mathcal{L}\big\{e^{5t}\cos(7t)\big\}=5\dfrac{5}{(s-6)^2+25}+6\dfrac{s-5}{(s-5)^2+49},\]

which is the answer. \(_\square\)

Find

\[\mathcal{L}\left\{\dfrac{\sin(t)}{t}\right\}.\]

First,

\[\mathcal{L}\left\{t^1\dfrac{\sin(t)}{t}\right\}=-\mathcal{L}\left\{\dfrac{\sin(t)}{t}\right\}'(s).\]

So,

\[\mathcal{L}\left\{\dfrac{\sin(t)}{t}\right\}=-\int \dfrac{1}{s^2+1}\text{ds}=-\arctan(s)+C.\]

A neat trick to find the \(C\) is puttin \(s=\infty\); then the \(e^{-st}\) becomes zero and the integral also becomes zero, so we have

\[\lim_{s\to\infty}-\arctan(s)+C=0\implies C=\dfrac{\pi}{2}.\]

Therefore,

\[\mathcal{L}\left\{\dfrac{\sin(t)}{t}\right\}=\dfrac{\pi}{2}-\arctan(s).\ _\square\]

Inverse Laplace Transform

If \(\mathcal{L}\{f(t)\}=F(s),\) then the inverse Laplace transform of \(F(s)\) is \(\mathcal{L}^{-1}\{F(s)\}=f(t)\).

We see some examples of how to calculate Laplace inverse.

Find

\[\mathcal{L}^{-1}\left\{\dfrac{5}{s^2-4s+3}\right\}.\]

We can ignore the constant (in this case 5) as it doesn't affect our Laplace transform much. We can factor the denominator into easy linear factors, so let's try that

\[ 5\mathcal{L}^{-1}\left\{\dfrac{1}{(s-1)(s-3)}\right\}=\dfrac{5}{2}\mathcal{L}^{-1}\left\{\dfrac{1}{s-3}-\dfrac{1}{s-1}\right\}.\]

We use the fact \(\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{at}\)(proved earlier), so this becomes

\[\dfrac{5}{2}e^{3t}-\dfrac{5}{2}e^t.\ _\square\]

Find

\[\mathcal{L}^{-1}\left\{\dfrac{2}{(s-9)^2+1}\right\}.\]

We first note that

\[\mathcal{L}^{-1}\left\{\dfrac{2}{s^2+1}\right\}=2\sin(t).\]

Since we are shifting the LHS by 9, we multiply by \(e^{9t}\) to get

\[\mathcal{L}^{-1}\left\{\dfrac{2}{(s-9)^2+1}\right\}=2e^{9t}\sin(t).\ _\square\]

Find

\[\mathcal{L}^{-1}\left\{\dfrac{2(s-1729)}{(s-2)^2+1}\right\}.\]

We can write this as

\[2\mathcal{L}^{-1}\left\{\dfrac{s-2}{(s-2)^2+1}\right\}-3454\mathcal{L}^{-1}\left\{\dfrac{1}{(s-2)^2+1}\right\}.\]

By doing what we did in the last problem, we have this to be equal to

\[2e^{2t}\cos(t)-3454e^{2t}\sin(t).\ _\square\]

The Convolution Theorem

The convolution theorem for Laplace transform is a useful tool for solving certain Laplace transforms. First, we must define convolution.

The convolution of two functions is given by

\[(f*g)(t)=\int_0^t f(t-\tau) g(\tau)\, \text{d}\tau.\]

Here is an example of convolution:

Find the convolution

\[(\sin*\cos)(t). \]

We use the definition

\[I=(\sin*\cos)(t) =\int_0^t \sin(t-\tau) \cos(\tau)\, \text{d}\tau.\]

We can use trigonometric identities to write this as

\[I=\int_{0}^{t} \big(\sin(t)\cos(\tau)-\cos(t)\cos(\tau)\big) \cos(\tau)\, \text{d}\tau=\sin(t)\int_{0}^{t} \cos^2(\tau)\, d\tau-\cos(t)\int_{0}^{t} \cos(\tau)\sin(\tau)\, d\tau.\]

Both integrals can be solved using double- or half-angle identities to get

\[\begin{align}I&=\dfrac{\sin(t)}{2}\int_{0}^{t} 1+\cos(2\tau)\, d\tau-\dfrac{\cos(t)}{2} \int_{0}^t \sin(2\tau)\, d\tau\\&=\dfrac{t\sin(t)}{2} +\dfrac{\sin(t)\sin(2t)}{4}-\dfrac{\cos(t)\big(1-\cos(2t)\big)}{4}.\end{align}\]

Plugging in double-angle identities, we will get the last two terms to cancel out, which gives us

\[I=\dfrac{t\sin(t)}{2}.\ _\square\]

This will be useful in Laplace transforms because of the convolution theorem:

The convolution theorem states that

\[\mathcal{L}(f*g)=\mathcal{L}(f)\mathcal{L}(g).\]

Start with

\[\begin{align}\mathcal{L}(f)\mathcal{L}(g)&=\int_0^\infty e^{-sx} f(x)\, dx \int_0^\infty e^{-sy} g(y)\, dy\\&= \int_0^\infty\int_0^\infty e^{-s(x+y)} f(x) g(y)\, dx\, dy. \end{align}\]

Here make a substitution:

\[\begin{align}1t=x+y \to y&=t-x\\\\dx\, dy &= dx\, dt\\t &= \Big|_0^\infty, x=\Big|_0^t. \end{align}\]

Then the integral turns into

\[ \mathcal{L}(f)\mathcal{L}(g)=\int_0^\infty\int_0^t e^{-st} f(x) g(t-x)\, dx\, dt = \mathcal{L}(f*g).\ _\square\]

Solving Differential Equation

We first start with the following theorem:

\[\mathcal{L}\big\{f^{(n)}(t)\big\}=s^n\mathcal{L}\{f\}-\sum_{i=1}^{n}s^{n-i}f^{(i-1)}(0)\]

We see the base case at \(n=1\) is true by using integration by parts. So assume this is true for \(n=k,\) then

\[\mathcal{L}\big\{f^{(k)}(t)\big\}=s^{k}\mathcal{L}\{f\}-\sum_{i=1}^{k}s^{n-i}f^{(i-1)}(0).\]

Consider

\[\mathcal{L}\big\{f^{(k+1)}(t)\big\}=\int_0^\infty f^{(k+1)}(t)e^{-st}\text{dt}.\]

Now consider \(\begin{cases} v'=f^{(k+1)}(t)\implies v= f^{(k)}(t)\\ u=e^{-st}\implies u'=-se^{-st}\end{cases}\), then

\[\begin{align}\int_0^\infty f^{(k+1)}(t)e^{-st}\text{dt}&=\left. e^{-st}f^{(k)}(t)\right|_0^\infty+s\int_0^\infty f^{(k)}(t)e^{-st}\text{dt}\\\\\mathcal{L}\big\{f^{(k+1)}(t)\big\}&=f^{(k)}(0)+s\mathcal{L}\big\{f^{(k)}(t)\big\}\\&=s^{k+1}\mathcal{L}\{f\}-\sum_{i=1}^{k+1}s^{n-i}f^{(i-1)}(0)\end{align}\]

by induction. Hence proved. \(_\square\)

How do we use this? FIrst note that in a simple form \(\mathcal{L}\{f'(t)\}=s\mathcal{L}\{f(t)\}-f(0)\) and \(\mathcal{L}\{f''(t)\}=s^2\mathcal{L}\{f(t)\}-sf(0)-f'(0)\) as our examples are mainly \(2^\text{nd}\) ODEs.

Solve the \(2^\text{nd}\) ODE

\[f''+2f'+2f=\sin(t)\]

with \(f(0)=0\) and \(f'(0)=0.\)

First take the Laplace transform of both sides:

\[\begin{align}\mathcal{L}\{f''(t)\}+2\mathcal{L}\{f'(t)\}+2\mathcal{L}\{f(t)\}&=\dfrac{1}{s^2+1}\\(s^2+2s+2)\mathcal{L}\{f(t)\}-(2s+1)f(0)-f'(0)&=\dfrac{1}{s^2+1}\\\\\mathcal{L}\{f(t)\} &=\dfrac{1}{(s^2+1)(s^2+2s+2)}\\&=\dfrac{1}{5(s^2+1)}-\dfrac{2s}{5(s^2+1)}+\dfrac{2s}{5\big((s+1)^2+1\big)}+\dfrac{3}{5\big((s+1)^2+1\big)} \\&=\dfrac{1}{5(s^2+1)}-\dfrac{2s}{5(s^2+1)}+\dfrac{2(s+1)}{5\big((s+1)^2+1\big)}-\dfrac{2}{5\big((s+1)^2+1\big)}+\dfrac{3}{5\big((s+1)^2+1\big)} \\&=\dfrac{1}{5(s^2+1)}-\dfrac{2s}{5(s^2+1)}+\dfrac{2(s+1)}{5\big((s+1)^2+1\big)}+\dfrac{1}{5\big((s+1)^2+1\big)}.\end{align}\]

Taking Laplace inverse,

\[f(t)=\dfrac{\sin(t)-2\cos(t)+2e^{-t}\cos(t)+e^{-t}\sin(t)}{5}.\ _\square\]

Evaluating Improper Integrals

\[\int_0^\infty \dfrac{f(t)}{t}e^{-at}\text{dt}=\int_a^\infty \mathcal{L}\{f(t)\}(s)\text{ds} \implies (\text{if } a=0)\int_0^\infty \dfrac{f(t)}{t}\text{dt}=\int_0^\infty \mathcal{L}\{f(t)\}(s)\text{ds}\]

Consider the right integral:

\[\int_{0}^{\infty} \mathcal{L} \{f(t)\}(s) ds = \int_{s=0}^{\infty} \int_{t=0}^\infty f(t) e^{-st} dt.\]

Changing the order of integration and performing inner integration on variable \(s,\) we get the result

\[ \int_{t=0}^{\infty} f(t) \int_{s=0}^\infty e^{-st} dt= \int_0^\infty \frac{f(t)}{t} dt.\ _\square \]

So let's see how to apply this:

Prove the Dirichlet integral

\[\int_0^\infty \dfrac{\sin(t)}{t}\text{dt}=\dfrac{\pi}{2}.\]

This famous integral can be proved in one line:

\[\int_0^\infty\frac{ \color{blue}{\sin(x)} }{x}\, dx=\int_{0}^{\infty}\mathcal{L}\{ {\color{blue}{\sin(x)}} \}(s)\; ds=\int_{0}^{\infty}\frac{1}{s^{2}+1}\, ds=\arctan s\bigg|_{0}^{\infty}=\dfrac{\pi}{2}.\ _\square\]

Even without this, we can solve some integrals like:

Find

\[\int_0^\infty t^{1729}\sin(t)e^{-t}\text{dt}.\]

First,

\[\begin{align}\int_0^\infty t^{1729}\sin(t)e^{-t}\text{dt}&=\mathcal{L}\big\{t^{1729}\sin(t)\big\}(1)\\&=\left.\dfrac{(-1)^{1729}}{2i} \dfrac{d^{1729}}{ds^{1729}} \dfrac{1}{s+i}-\dfrac{1}{s-i}\right|_{s=1}\\&=\left. \dfrac{-1}{2i} \left( \dfrac{-1729!}{(s-i)^{1730}}-\dfrac{-1729!}{(s+i)^{1730}}\right)\right|_{s=1}\\&=\dfrac{1729!}{2^{865}}.\end{align}\]

So, a seemingly difficult integral that would have taken forever with tabular integration is solved in less than 5 minutes with Laplace transform. \(_\square\)

Cite as: Laplace Transform. Brilliant.org. Retrieved from https://brilliant.org/wiki/laplace-transform/

Laplace Transform | Brilliant Math & Science Wiki (2024)
Top Articles
Used Gas Scooters For Sale Near Me For Adults
How to Spot Scammers on Craigslist. What You Need to Know to Stay Safe
Butte Jail Roster Butte Mt
Monster Raider Set
O'reilly's In Monroe Georgia
Costco store locator - Florida
Triple A Flat Tire Repair Cost
Cbs Week 10 Trade Value Chart
Tyson Employee Paperless
Craigslist Pets Longview Tx
PK | Rotten Tomatoes
Spacebar Counter - Space Bar Clicker Test
Sinai Web Scheduler
Real Estate Transfers Erie Pa
Craigslist Metal Roofing
Bailu Game8
Lubbock Avalanche Journal Newspaper Obituaries
Krystal Murphy Below Deck Net Worth
Slmd Skincare Appointment
All classes in Pathfinder: Wrath of the Righteous
Chester Farmers Market vendor Daddy's a Hooker: Ed Lowery happy fiber artist for 65 years
Church Bingo Halls Near Me
Dr Bizzaro Bubble Tea Menu
Truist Bank Open Saturday
Bfri Forum
Huntress Neighborhood Watch
91 Freeway news - Today’s latest updates
Wolf Of Wall Street Tamil Dubbed Full Movie
My Fico Forums
The University of Texas at Austin hiring Abatement Technician in Austin, TX | LinkedIn
La Times Jumble Answer Today
Durrell: The Alexandria Quartet - The Modern Novel
Family Leisure Sale
Phasmophobia Do As I Command Challenge
فیلم 365 روز 1 نیکی مووی
Colorado Pick 3 Lottery
Laurin Funeral Home
Franchisee Training & Support | Papa Johns Pizza Franchise UK
Ew41.Ultipro
Phrj Incarcerations
Matt Laubhan Salary
Plusword 358
Gym Membership & Workout Classes in Lafayette IN | VASA Fitness
18K Gersc Stamped Inside Ring
Mi Game Time
Birmingham National Weather Service
Redbox Walmart Near Me
[US/EU] ARENA 2v2 DF S4 Rating Boost 0-1800 / Piloted/Selfplay / ... | ID 217616976 | PlayerAuctions
Bme Flowchart Psu
Job ID:24023861 - Compliance and Operational Risk Specialist - Multiple Locations
Latest Posts
Article information

Author: Tyson Zemlak

Last Updated:

Views: 5950

Rating: 4.2 / 5 (43 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Tyson Zemlak

Birthday: 1992-03-17

Address: Apt. 662 96191 Quigley Dam, Kubview, MA 42013

Phone: +441678032891

Job: Community-Services Orchestrator

Hobby: Coffee roasting, Calligraphy, Metalworking, Fashion, Vehicle restoration, Shopping, Photography

Introduction: My name is Tyson Zemlak, I am a excited, light, sparkling, super, open, fair, magnificent person who loves writing and wants to share my knowledge and understanding with you.